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Abstract

A method is presented for modelling droplet size distributions within condensing steam ¯ows. Polydispersed
droplet spectra are treated by modelling moments of the size distribution, rather than the more traditional approach
of discretising the continuous range of radii. Attention is focussed on wet-steam ¯ow in turbines for which accurate

prediction of droplet spectra is an essential step towards computing thermodynamic wetness losses and other two-
phase e�ects. The method has been validated by comparison with independent calculations for both primary and
secondary nucleation. Excellent agreement was obtained throughout, but with substantial reduction in complexity

and computer usage. The moment equations have been cast in both Lagrangian and Eulerian forms and are well
suited for incorporation into computational ¯uid dynamic codes. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Vapour±droplet ¯ows containing polydispersed
liquid droplets are relevant to a number of areas of
scienti®c and engineering importance. These include

the ¯ight of aircraft in humid conditions, wet-steam
¯ows in steam turbines, and droplet-spray combustion
processes. The work described in this paper stems from

wet-steam research, but the methods presented may
equally be of interest for other vapour-droplet ¯ows
with phase change.
For the large low-pressure (LP) turbines used for

electricity generation, the presence of condensation
leads to problems of blade erosion and to a loss in tur-
bine e�ciency. The latter stems from the irreversibil-

ities associated with phase transition, and from the

impact of inter-phase heat and mass transfer on the

¯ow behaviour. Each of these processes is strongly

dependent on the size of the tiny liquid droplets which

are formed by spontaneous nucleation from the

vapour. Fig. 1 shows the entropy increase (computed

with an established method [1]) for an initially wet

¯ow undergoing a typical LP turbine blade-row expan-

sion. The entropy is plotted in non-dimensional form

as a function of initial droplet diameter, and the curve

highlights the importance of droplet size in determin-

ing thermodynamic losses. This fact has not yet been

taken on-board by turbine manufacturers who, for

want of a suitable alternative, continue to use a purely

empirical correlation to account for wetness losses.

Measurements of droplet sizes in turbines, based on

light extinction techniques [2], indicate that droplets

are in fact present with a range of sizes typically span-
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Nomenclature

c droplet slip velocity
d droplet diameter
f droplet number density function

G droplet growth rate (i.e., dr=dt fol-
lowing the droplet)

h speci®c enthalpy

J nucleation rate per unit mass of
mixture

lg mean free path of vapour mol-

ecules
nT total number of droplets per unit

mass of mixture
p pressure

Prg vapour Prandtl number
r droplet radius
Rg gas constant per unit mass

s speci®c entropy
S vector area
t time

u � �u1, u2, u3� velocity vector

u modulus of u
V volume
x��x 1, x 2, x 3� position vector

y wetness fraction
DT vapour subcooling, (Ts ÿ Tg)
g skewness of size distribution

lg thermal conductivity of vapour
mj jth moment of size distribution
r density

s standard deviation, surface tension

Subscripts and superscripts
g vapour phase

l liquid phase
j moment order
m mixture quantity

s saturation quantity
0 particle phase space
1, 2 upstream, downstream

Fig. 1. Entropy increase as a function of initial droplet size for a wet-steam expansion (expansion rate, _p � 1500 sÿ1, initial wetness,
y = 0.02, pressure ratio = 2.8).
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ning one or two orders of magnitude and it is likely

that this spread is even greater within nucleating
regions of the ¯ow. Since inter-phase heat and mass
exchange are strong functions of droplet diameter, it is

clear that the full spectrum of droplet sizes must be
modelled in order to accurately predict two-phase
behaviour.

To date, calculation methods for condensing steam
¯ow have mostly followed a mixed Eulerian±Lagran-

gian approach, whereby conservation equations for the
two-phase mixture are solved in an Eulerian frame of
reference, but nucleation and droplet growth are calcu-

lated following ¯uid particles. Both steady and
unsteady two-dimensional ¯ows have been computed

in this manner (see, for example, [1,3,4]) and in each
case the continuous droplet spectra were modelled in a
discrete fashion by computing the behaviour of a large

number of droplet groups. Compared with the alterna-
tive fully Eulerian method, this type of calculation has
a number of advantages which have been described in

detail by Young [1]. Nonetheless, various di�culties
arise since the method entails tracking streamlines

through the ¯ow-®eld and interpolating ¯uid properties
between di�erent computational grids. It is thus
reasonable to suppose that the three-dimensional,

unsteady ¯ow-®elds typical of LP turbines would be
more easily computed in a purely Eulerian framework.

(The di�culties for the mixed calculations are particu-
larly severe for unsteady ¯ows since the tracking pro-
cedures must then follow instantaneous ¯uid particle

pathlines and the interpolation must be applied to dro-
plet spectra in addition to the other ¯uid properties
[4].) A few fully Eulerian methods have been reported

in the literature, including those of Schnerr and Dohr-
mann [5] for two-dimensional moist air ¯ow, and of

McCallum and Hunt [6] for one-dimensional wet-
steam ¯ow, but none of the publications has presented
a satisfactory means of dealing with the polydispersed

liquid phase in an Eulerian framework. (In this con-
nection, it is noted that both the methods cited employ
averaging techniques which approximate the true poly-

dispersed ¯ow with a single droplet group.)
As stated above, polydispersed droplet and particle

size distributions occur in many situations, and a var-
iety of mathematical techniques have been developed
to model them. These include the statistical approach

often applied in atmospheric physics (e.g., [7,8]) and
the moment evolution methods used, for example, to

model growth and aggregation of kidney stones [9],
and solids separation [10]. The present paper describes
a method of treating wet-steam ¯ows based on the lat-

ter, moment approach. Equivalent techniques have
been employed in the past for other vapour±droplet
¯ow problems (for example, for spray combustion pro-

cesses [11]), but the moment method has not yet been
formally applied to condensing ¯ows. Unlike methods

based on an average droplet size, the moment
approach correctly models exchanges of heat and mass

between phases, but involves substantially less compu-
tation than discrete spectrum calculations. The
moment equations may be cast in either a Lagrangian

or an Eulerian form and are therefore readily incorpor-
ated into any computational ¯ow method.

2. Theory

The conservation equations for condensing steam

¯ow have been presented many times in the literature
(e.g., [12]) and so the following theory will be restricted
to droplet conservation. The techniques adopted
broadly follow those developed for other size distri-

bution problems (see, for example, [13,14]), but the
equations are presented here in a form more appropri-
ate to compressible vapour-droplet ¯ows. It is assumed

throughout that there is zero velocity slip between
phases, which is an excellent approximation for most
self-nucleating ¯ows.

2.1. Droplet conservation for nucleating ¯ows

Fig. 2 shows an arbitrary control volume drawn in
``particle phase space''. This is a four-dimensional
space composed of the three spatial dimensions, x1, x2
and x3 (only two of which are shown in the ®gure),
and a particle size dimension, r. The trajectories of
droplets in phase space are described by the phase vel-

Fig. 2. Control volume in ``particle phase space''.
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ocity, u ', comprising the three usual velocity com-
ponents plus a droplet growth ``velocity''. i.e.,

u 0 �

0BB@
dx 1=dt
dx 2=dt
dx 3=dt
dr=dt

1CCA �
0BB@
u1
u2
u3
G

1CCA: �1�

The phase velocity thus simultaneously describes the
movement and growth of individual droplets.
The droplet size distribution varies continuously in

time and space, and is described by the droplet number

density function, f. Thus, f dr is the number of droplets
per unit mass of mixture in the size range r to (r +
dr ). The total number of droplets contained within the

control volume of Fig. 2 is therefore

Ncv �
�
rm f dV 0 �2�

where rm is the mixture density and dV 0 �
dx 1dx 2dx 3dr is an elemental phase space volume.
With the above de®nitions, an expression for droplet

conservation in integral Eulerian form is easily derived.

Assuming no droplet breakup or agglomeration,
changes in Ncv are due only to nucleation of new
droplets within the control volume and to ¯uxes cross-

ing the control surface. The latter include the usual
convective ¯uxes plus an additional droplet growth
¯ux, but with the mathematical formalism adopted

here these ¯uxes may be treated in an identical man-
ner. The droplet conservation equation is thus

@

@ t

�
rm f dV 0 �

�
rm fu 0 � dS 0 �

�
rmJ dV 0 �3�

where J dr is the nucleation rate of droplets in the
radius range r to (r + dr ) per unit mass of mixture.
(It should be noted that rm and u are functions of pos-

ition and time, whilst f, J and G also depend on the
droplet radius.) The quantity dS ' is an element of con-
trol surface area. Although di�cult to visualise, the

meaning of dS ' should be clear by extension from
three dimensions. By applying Gauss's divergence theo-
rem and shrinking to a point, Eq. (3) may be expressed

in the di�erential form

@

@ t

ÿ
rm f

�� r0 � ÿrmfu
0� � rmJ �4�

where r0��@=@x 1, @=@x 2, @=@x 3, @=@ r�t:
The advantage of the phase space formulation is

that it is easily extended to include other phenomena.
For example, by writing f as a function of r and c,
where c is the droplet slip velocity, inertial relaxation

e�ects may be included without changing the form of
Eq. (4) (although the number of dimensions would be
increased to seven). However, for the current case,

with no velocity slip, it is convenient to expand Eq. (4)
and revert to familiar physical space, giving

@

@ t

ÿ
rm f

�� r � ÿrm fu
�� @

@ r

ÿ
rm fG

� � rmJ: �5�

This is the Eulerian form of droplet conservation. So
far, attempts at solving the equation in this form for

wet-steam have resorted to a single average droplet
size, and corresponding average growth rate.

2.2. Moment transforms

The use of moments for solving population balance

problems brings a number of advantages which are
discussed in Ref. [13, p. 51]. One bene®t particularly
relevant to wet-steam ¯ow is that inter-phase heat and
mass transfer may be accurately modelled by solving

just a few moment equations, rather than by comput-
ing the formation and growth of a large number of
droplet groups.

The jth moment of the droplet size distribution is
de®ned as

mj �
�1
0

r jf dr �6�

Low order moments have a physical signi®cance and
of particular interest here are the zeroth and third
moments as these are related to the total number of

droplets per unit mass of mixture and to the wetness
fraction, respectively:

nT � m0 �7�

y � 4prl

3
m3: �8�

Similarly, the ®rst and second moments are related to
the ``total radius'' and total droplet surface area. Since

coupling between droplet conservation and the other
conservation equations is chie¯y through the wetness
fraction (Eqs. (18) and (19) below), an expression is

required for the variation of m3:
The evolution of mj may be determined from Eq. (5)

by multiplying through by r j and integrating over all

radii. The last term on the LHS of Eq. (5) requires in-
tegration by parts. Noting that r jf disappears at
r � 0,1, the ®nal result is

@

@ t �rmmj � � r � �rmmju�

� jrm

�1
0

r jÿ1Gf dr� rmJ�r
j
� , �9�

or (by incorporating mass continuity) in Lagrangian
form
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Dmj
Dt
� j

�1
0

r jÿ1Gf dr� J�r j
� , �10�

where D/Dt is the substantive derivative, following a
¯uid particle. In deriving these relations, it is assumed

that droplets are formed only at the critical radius, r�,
so that the nucleation rate may be written as a Dirac-
delta function:

J � J�d�rÿ r� �, �11�

where J� is the rate of formation of critically-sized

embryos per unit mass of mixture. Standard ex-
pressions are used for J� and r�, and these can be
found in [15].

2.3. Closure of moment equations

Ideally, the moment evolution equations may be
closed if droplet growth can be accurately represented
by the linear relation

G � a0 � a1r, �12�
where a0 and a1 depend only on vapour properties.
Under these circumstances, Eq. (10) would become

Dmj
Dt
� j
ÿ
a0mjÿ1 � a1mj

�� J�r j
� : �13�

The rate of change of mj thus depends only on mj and
mjÿ1, and furthermore, this dependence disappears at

j � 0: In other words Eq. (13) is a closed set of
equations, requiring no extrapolation or additional
modelling. Since the remaining gas dynamic equations

may be solved once the wetness fraction is known, Eq.
(13) suggests that only the ®rst four moments need to
be modelled in order to correctly compute all inter-

phase exchange processes, provided Eq. (12) is a valid
representation of droplet growth. Computing higher
order moments, beyond j = 3, provides additional in-
formation on the shape of the size distribution, but

does not a�ect the accuracy of the ¯uid dynamic calcu-
lations.
For drop-wise condensation in pure steam, droplet

growth does not follow the linear relationship dis-
cussed above. However, for the size range of interest in
turbine ¯ows, the growth rate is accurately represented

by (see Appendix):

G � aÿ1
r
� a0 � a1r: �14�

The counterpart of Eq. (13) now includes a depen-
dence on mjÿ2, which means the equations are no

longer closed. In particular, the evolution of the 1st
moment now depends on mÿ1: However, the depen-
dence is not strong and the problem may be overcome

with an appropriate extrapolation for mÿ1: Further
details of how this is achieved are given below.

2.4. Coupling with the gas dynamic equations

Although a major bene®t of the moment approach
is the ease with which it may be implemented in an
Eulerian framework, the equations are developed in

Lagrangian form here in order to compare with exist-
ing polydispersed calculation procedures. The gas
dynamic equations are outlined below for complete-

ness, but the reader is referred to [12] for a thorough
derivation.
For inviscid, adiabatic wet-steam ¯ow with zero

inter-phase slip, the mass continuity, momentum and
energy equations for the two-phase mixture are, re-
spectively,

@rm

@ t
� r � �rmu� � 0 �15�

rm

Du

Dt
� rp � 0 �16�

@
ÿ
rmh0

�
@ t

� r � ÿrmh0u
�ÿ @p

@ t
� 0, �17�

where h0 � hm � 1=2u2 is the mixture speci®c stagna-
tion enthalpy. The enthalpy, hm, and density, rm, are

mixture quantities and therefore depend on the wetness
fraction according to the following expressions

hm � �1ÿ y�hg � yhl �18�

1

rm

� 1ÿ y

rg

� y

rl

' 1ÿ y

rg

�19�

Strictly, liquid-phase quantities, such as hl and rl,

depend on the droplet radius due to capillarity e�ects
[16]. However, experience has shown that this depen-
dence may be neglected with virtually no change in the

numerical results but with considerable reduction in
complexity.
Introducing Eq. (15) into Eq. (17) and subtracting

the dot product of u and Eq. (16) gives the Lagrangian

or thermodynamic form

Dhm

Dt
� 1

rm

Dp

Dt
: �20�

(Note that this expression does not imply constant
entropy of ¯uid particles, as it would for single-phase
¯ow.)

Eqs. (8), (10), (18)±(20) together constitute a com-
plete speci®cation of changes in ¯uid properties follow-
ing a ¯uid particle, and may be integrated if the
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pressure history, p�t�, is known. Details of the numeri-
cal procedure are not given here, but the approach is
similar to that described in [1], and is based on a

simple predictor±corrector method.

3. Comparison with existing methods

For the purpose of validation, the current method
has been compared with a Lagrangian style discrete
spectrum calculation procedure due to Young [1].

Since the aim here is to test the validity of the moment
approach, and is not concerned with modelling the
¯ow-®eld, the pressure±time history is speci®ed by a

simple, constant expansion rate, i.e.,

_p � 1

p

Dp

Dt
� constant: �21�

(The usual procedure is to determine p�t� by tracking
¯uid particles through a ¯ow-®eld established by time-
marching computations [1,3,4].)

Young's method originally employed the full droplet
growth expression given in Appendix A, Eq. (A1).

However, the r�=r term in the numerator of this ex-
pression stems from capillarity e�ects and is signi®cant
only in the very early stages of growth. Recent versions

of Young's computer code do not, therefore, include
this term, resulting in a growth expression which is
adequately approximated by Eq. (12). The closed form
of the moment evolution equation, Eq. (13), has there-

fore been used for an initial comparison, and results
based on the full growth expression are deferred until
later in this section.

3.1. Primary nucleation

Fig. 3 compares the mean1 and standard deviation

of droplet diameters computed by the two methods for
a nucleating expansion of initially dry steam. For accu-
rate computation of the droplet spectrum, the discrete
calculations may be carried out in a manner that

retains every droplet group nucleated. However, this
would lead to excessive computation for most practical
¯ows (65 droplet groups were generated in the example

shown), so the method may also be operated with a
droplet averaging technique. The size range is then
divided into a number of bins speci®ed by the user,

and at the end of each integration step, groups falling
in the same bin are merged in a manner that conserves
mass and droplet number. Curves are shown in the

Fig. 3. Sauter mean droplet diameter and standard deviation computed for a nucleating expansion � _p�ÿ1000, DT1 �ÿ5, p1 �
0:5bar).

1 The mean size shown in this and subsequent ®gures is the

Sauter mean diameter, de®ned as d32 � 2m3=m2:
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®gure for no averaging, ®ve droplet groups, and a
single droplet group. It is of some satisfaction that the

moment approach produces results which are in excel-
lent agreement with those obtained using the full spec-
trum, whereas the calculation with a single droplet

group overestimates the average droplet size by ap-
proximately 30%. This discrepancy stems chie¯y from
the impact of averaging on the nucleation process,

since it is principally the total number of droplets
formed that dictates their ®nal size. The inter-phase
heat exchange rate cannot be correctly modelled with a

single droplet group, leading to errors in the predicted
vapour subcooling and, in turn, nucleation rate. Both
the duration and intensity of the nucleation pulse are
signi®cantly a�ected, as shown in Fig. 4. (Note that

the ®nal droplet number di�ers by a factor of 2.4
between the 1-group and non-averaged cases.)

3.2. Secondary nucleation

The complex ¯ows encountered in turbine blade pas-
sages involve a number of physical processes that may
lead to a second, or even a third, nucleation of dro-
plets. These include rapid re-expansion of an already

wet ¯ow, unsteady ¯ow regimes induced by supercriti-
cal heat addition [17], and interaction between trailing-
edge shock-waves and the nucleation zone [18]. For

such cases, it is likely that correct modelling of the

droplet polydispersion will be even more important
than for single-nucleation expansions, since established

and freshly nucleated droplets may di�er greatly in di-
ameter.
Fig. 5 shows predicted droplet diameters for a rapid

expansion with secondary nucleation. (The primary
condensation has been modelled assuming a mono-dis-
persion of droplets.) The onset of the secondary

nucleation is evident from the sudden reduction in
average droplet diameter, due to the formation of
many extremely small droplets. The moment method is

again in very good agreement with calculations retain-
ing the full droplet spectrum, and further evidence that
the polydispersed nature of the ¯ow is correctly mod-
elled is given by the predicted skewness of the size dis-

tribution, de®ned by

g � 1

nT

�1
0

�
rÿ �r

s

�3

f�r� dr: �22�

This is also shown in the ®gure and compares extre-

mely well with the discrete calculations. It is noted that
monodispersed calculations give very signi®cant errors
for this case (as is also shown in Fig. 5), and corre-
spondingly large inaccuracies for the vapour subcool-

ing, entropy increase, and other ¯uid properties.
(Other averaging techniques, preserving, for example,
liquid mass and surface area, yield similarly inaccurate

results.)

Fig. 4. Predicted nucleation pulses for the primary nucleating expansion of Fig. 3.
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3.3. Inclusion of capillarity terms

As noted previously, inclusion of capillarity e�ects

in the droplet growth law prevents complete closure of
the moment evolution equations. This problem may be
overcome if a suitable extrapolation is used to deter-

mine mÿ1: A simple and robust estimation of this quan-
tity can be obtained by considering a mono-dispersion
with radius r0, for which

mÿ1 �
nT

r0
� m20

m1
�23�

(Note that this corresponds to a linear extrapolation of
log mj:) Fig. 6 shows predicted droplet sizes for both
primary and secondary nucleating ¯ows using the

above estimation for mÿ1 combined with Eq. (14). The
results are compared with discrete calculations based
on the full droplet growth law, Eq. (A1). The approxi-
mation clearly works well for primary nucleation, but

is less good in the nucleation zone of the secondary
nucleating expansion. This is to be expected since the
use of Eq. (23) then underpredicts mÿ1: Improvements

may be possible through the use of a more sophisti-
cated extrapolation for mÿ1, but the extra complexity
seems unwarranted given the size of the discrepancies

and the uncertainties which are inherent in droplet

growth theory anyway. (For a comprehensive discus-
sion on the status of droplet growth theory, see [15].)

3.4. Higher order moments

Although only the ®rst four moments of the size dis-

tribution are necessary to correctly model phase
change, higher order moments are readily computed
by solving one additional equation for each additional
moment. The ®rst nine moments, as predicted by both

the discrete and moment methods, are plotted in Fig. 7
in the non-dimensional form:

�mj �
mj
mj�1

m1
m0
: �24�

(This form enables all the moments to be plotted on

the same scale, and for a mono-dispersion yields �mj � 1
for all j.) Despite some discrepancies, the moment dis-
tribution is reasonably predicted for both primary and
secondary nucleating cases.

If su�cient moments are computed, then it is theor-
etically possible to reconstruct the continuous size dis-
tribution using, for example, the methods described in

[13]. This is unlikely to give reliable results for bi-
modal or complex size distributions, but for most pur-
poses it is not necessary. Heat and mass transfer,

entropy production rate, and other ¯ow properties

Fig. 5. Average droplet diameter and skewness for an expansion with secondary nucleation � _p�ÿ10,000, d1�0:2mm, y1�0:02, p1�
0:25bar). Values of skewness have been divided by 100.

A.J. White, M.J. Hounslow / Int. J. Heat Mass Transfer 43 (2000) 1873±18841880



Fig. 6. Average droplet diameter predicted using di�erent growth approximations Ð comparison of discrete and moment

approaches.

Fig. 7. The ®rst nine moments of the size distribution for primary and secondary nucleating expansions.
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may all be computed using just the ®rst few moments,
whilst the occurrence of phenomena such as secondary

nucleation is easily identi®ed from the average, stan-
dard deviation and skewness of the distributions. It
may also be possible to model additional processes,

such as droplet deposition onto turbine blades, using
the moment approach, but this would require further
investigation. If it is essential to compute the shape of

the size distribution, it is probably safer, however, to
resort to discrete calculations.

3.5. Comparison of CPU usage

Direct comparison of the CPU timings for the two

methods is not possible because the computer program
for the discrete method includes additional routines,
for example to compute suitable time steps for stable

integration. (The same time step sizes have been used
for the moment calculations, but these are read as
input to the computer program.) Nonetheless, it is
clear from the timings, which are shown in Table 1,

that the moment method a�ords considerable re-
ductions in computational requirements and it would
not be unreasonable to suppose an order of magnitude

improvement over full spectrum calculations for typical
cases.

4. Conclusions

A method of modelling droplet size distributions in
condensing ¯ows has been presented, and validated by

comparison with an independent calculation pro-
cedure. The method is based on a moment transform
of the droplet conservation equation, and produces

results which are in excellent agreement with discre-
tised calculations retaining the full droplet spectrum.
The equations have been cast in a Lagrangian frame of

reference for the purpose of validation, but the main
advantage of the moment approach is that it may
easily be implemented in an Eulerian framework and

so lends itself well to CFD methods. This is in contrast
to the discretised spectrum approach, for which Euler-
ian calculations would entail cumbersome spectrum

averaging techniques. The moment approach also
requires considerably less computational e�ort than

discrete calculations. Finally, it has been demonstrated
that the use of a single droplet size (as is used for cur-
rent Eulerian calculations) to approximate the true

polydispersed ¯ow, may lead to substantial errors, par-
ticularly in the case of secondary nucleations.
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Appendix. Droplet growth approximations

The droplet growth expression adopted as the basis
of the current work is a slightly modi®ed version of
the standard Gyarmathy equation:

G � dr

dt
� lgDT�1ÿ r�=r�

rl

ÿ
hg ÿ hl

�ÿ
r� 1:89�1ÿ n�lg=Prg

� : �A1�

The factor �1ÿ n� is a semiempirical correction intro-

duced by Young [15] to obtain precise agreement with
experimental data for LP nozzle expansions.
The above expression may be approximated by

expanding as a power series in r, giving

G �
X1
n�ÿ1

anr
n �A2�

where the an are functions only of the vapour proper-
ties and may be determined by straightforward ma-

nipulations. The agreement between the ®rst three
terms of Eq. (A2) and the full expression is shown in
Fig. 8 for 108 subcooling and a pressure of 0.25 bar,

i.e., at conditions typical of LP turbines. At higher
pressures, the agreement for large radii deteriorates,
but may be improved by including additional terms in
the expansion. The moment equations must then be

closed with appropriate extrapolations for the high
order moments. However, this additional complexity is
probably unjusti®ed given the uncertainty in droplet

growth theory. In the current work, therefore, only the
®rst three terms of Eq. (A2) have been considered,
leading to Eq. (14). Furthermore, the ®rst of these

terms only has a signi®cant e�ect for the initial stages
of growth and may be neglected without serious error.
This leads to the linear growth law, Eq. (12).

Table 1

Comparison of CPU timings on a Pentium II processor oper-

ating at 266 MHz

Primary nucleation (s) Secondary nucleation (s)

Full spectrum 4.40 17.29

5-Group 0.65 01.28

1-Group 0.34 00.28

Moments 0.06 00.07
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Growth for larger radii or higher pressures

In non-dimensional terms, the growth rate may be
expressed as powers of inverse Knudsen number,

1=Kn � d=lg: G=G0 then collapses onto a single curve,
irrespective of pressure and subcooling, except in the
early stages of growth where the r=r� term of Eq. (A1)

is signi®cant. Values of Kn are shown along the top
axis of Fig. 8. For Kn < 0:5, i.e., at large radii or high
pressures, the truncation errors associated with the
expansions shown increase rapidly. This is to be

expected since inspection of Eq. (A1) reveals that as
Kn40 (i.e., as the continuum regime is approached),
G4A=r, where A depends on gas properties only. The

growth rate can nonetheless be approximated by an
expansion of the same form as above by ®rst factoring
out 1/r from Eq. (A1). Under such circumstances, the

®rst term in the expansion will dominate, so that a
more sophisticated extrapolation for mÿ1 than given by
Eq. (23) may be required.
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